



# Muscular hydrostats biomechanical model to investigate *morphological computation* in grasping with soft structures

Vito Cacucciolo, PhD student v.cacucciolo@sssup.it

The BioRobotics Institute, Scuola Superiore S.Anna, Pisa, Italy

First RoboSoft plenary meeting, April 01 2014, Scuola Superiore Sant'Anna, Pisa

# Goals and theoretical basis

#### Morphological computation

- Rich and complex behavior let the body <u>compute;</u>
- Nonlinear dynamics;
- Interaction with the environment.

#### Body as a complex system

- Interaction of *agents* (e.g. muscles, sensors, structure) lead to the <u>emergence</u> of the system behavior (*self-organization*);
- Apply complex systems theory and Computational Mechanics tools;
- Complex network of springs and masses.



# Why a mathematical model?



#### • Understand the basic principles

- Extract the basic principles of muscular hydrostat structures (synthetic methodology);
- Transfer them into an artificial manufact bypassing technological limits (artificial muscles).

#### • Generality:

- soft animal structures (e.g., squid and octopus tentacle, elephant trunk);
- soft robotic arms with lumped actuation (e.g., pneumatic, hydraulic, sma).







# Methods

- Lagrangian dynamics:
  - Energy based, good control on large number of DOFs;
  - Implicit solver stiff equations due to constraints;
  - Constant volume constraint through penalty method.

• Contacts:

- Interaction with the environment;
- Grasping;
- Combination of penalty method and a step activation.



V. Cacucciolo, Muscular hydrostats biomechanical model to investigate morphological computation in grasping with soft structures



# Results (preliminar)

- Math is ready:
  - N-segments nonlinear dynamics;
  - Constant volume constraint;
  - Contact constraint.





V. Cacucciolo, Muscular hydrostats biomechanical model to investigate morphological computation in grasping with soft structures

### Outomes – next steps

- *Morphological computation* in grasping
  - Relation between structure and control strategies in grasping tasks above animals with soft structures;

#### • Evolutionary studies

- Co-evolution of morphology and control;
- How optimal control strategies are modified by changes in the structure.
- Soft robotic arm design
  - Apply results of biomechanical investigations;
  - Cheap bio-inspired control.









# Thank you for your attention.



V. Cacucciolo, Muscular hydrostats biomechanical model to investigate morphological computation in grasping with soft structures

